

Preliminary Findings from VDOT Demo on Dowel Alignment Using Magnetic Imaging Tool Scan-2

Mohamed Elfino, P.E., Ph.D. Assistant State Materials Engineer Shabbir Hossain, P.E., Ph.D. Research Scientist, VTRC

Demonstration Team

- VDOT
 - Kenneth Jennings
 - Jeff Martin & Robert Honeywell
- VTRC
 - Rick Childs
- CPTP/CTL
 - Tom Yu

MIT-Scan-2

Device designed specifically for the measurement of dowel bar position and alignment

Developed by Magnetic Imaging Tools, GmbH

MIT Scan-2

Designed specifically for measuring dowel bar position and alignment

using Magnetic tomography technology.

Dowel Alignment

Advantages

- Works on fresh or hardened concrete
- Real-time, automated data analysis
- Very accurate and reliable
- Efficient (1-2 min per joint)
 - 200 or more joints can be tested in an 8-hr workday
 - Up to 3 lanes can be tested in a single pass

So what if dowels are misaligned?

- The effectiveness of dowel bars may be compromised
 - Loss of load transfer efficiency (LTE)
 - Premature development of faulting
- Pavement damage may result
 - Spalling
 - Cracking

Demonstration Plan

- MIT SCAN-2 from FHWA under CPTP
- Training and Pilot Demo
 - US 460, Appomattox Bypass
 - November, 2005
- Perform scanning in different condition
 - Dowel Placement
 - Traffic Condition / Level
 - Five Demo Projects

Training and Pilot Demo

Training and Pilot Demo

Features of MIT Scan-2

- Very efficient
- Automated data analysis
- Real-time results
- Works on fresh or hardened concrete

(R) MIT GmbH Gostritzer Str. 61-63 D-01217 Dresden, GERMANY : www.mit-dresden.de email : mit@mit.tz-dd.de Federal Highway Administration Office of Pavement Technology sam.tvson@fhwa.dot.gov web : www.fhwa.dot.gov File q:\04 08 26\26081009.hdf Highway Direction Station No. Lane Joint : 454 x 38mm Bar type Bar spacing No. tion 129 455 146 -6 326 -10 311 305 1071 1379 12 308 1690 311 1996 307 305 2302 -10 300 307 3211 -7 304 304

Signal intensity Contour plot

Five Demo Projects

- I-64 in Hampton Roads District
 - EB HOV in City of Chesapeake
 - JPCP Constructed 1997
- US 60 in James City County
 - Very old JRCP
- I-66 in NOVA (Fairfax County)
 - JPCP Constructed 1995
 - WB Lane Between US 50 and VA 28
- I-295 in Richmond (Henrico County)
 - CRCP Constructed 1987
 - Southbound lane south of US60
- US-460 in Lynchburg (Appomattox Bypass)
 - Eastbound between VA 26 to VA 24
 - JPCP Constructed in 1993-94

Key Factors Affecting Dowel Alignment

Basket

- Placement prior to paving
- Number and type of pins used for anchoring
- Dowel Bar Inserter (DBI)
 - Equipment type
 - Equipment adjustment
 - PCC mix design

Dowel Placement

- Dowel Basket
 - US 460
 - I-64
- Mechanically Inserted Dowel (DBI)
 - I-66
- JRCP (No Dowel)
 - US 60
- Continuously Reinforced
 - I-295
 - No Transverse Steel

Safety

- All VDOT safety rules must be followed
- Traffic Control
 - Lane closer is preferable
 - Crash cushion in close proximity (25' to 50')
 - Rolling traffic control
 - Avoid bend or curve that obstruct long view
 - Traffic on the passing lane also need some control
- No injury reported
- "No data is worth someone's life" Ken Jennings

Typical Results: US 460 Joint 87 (Travel and Acc. Lane)

Typical Results: US 460 Joint 87 (Travel and Acc. Lane)

Typical Results: I-66

Joint 54 (Travel Lane and shoulder)

Typical Results: I-66 Joint 54 (Travel Lane and shoulder)

Typical Results: I-64, Joint 67

14121423.TXT (R) MIT GmbH Gostritzer Str. 61-63 D-01217 Dresden, GERMANY web : www.mit-dresden.de email: mit@mit.tz-dd.de Date + Time : 14/12/2005 14:23 File q:\05_12_14\14121423.hdf Highway : US 64 Direction : E : 0 + 528 Station No. : 67 Joint Lane : Lane 4 Bar type : 454 x 38mm : 300 mm Bar spacing 230 mm Concrete thickness : Bar x-Loca Depth Side Misalignm. Bar No. tion Shift hor, vert. Space mm mm mm mm mm 119 130 119 2 432 135 -0 -0 313 3 736 134 304 45 137 1044 0 6 308 1352 136 1 10 308 6 139 1658 -0 5 306 D 7 1933 -1-6 141 275 D 8 2241 141 308 D 9 2550 -0 5 143 309 D 10 2857 141 -1 6 307 D 11 3164 137 307

Summary Result for I-64

Joint Score

- Reflects the risk of joint locking the higher the Joint score, the higher the risk
- Determined as a sum of product of number of bars at each level of misalignment and weighting factors
- Further research is needed to refine Joint Score

Range of misalignment, mm	Weight	
$10 < d \le 15$	0	
$15 < d \le 20$	2	
$20 < d \le 25$	4	
$25 < d \le 38$	5	
38 < d	10	

Accuracy - Repeatability

Three replicate measurements

- Interstate 64 at Hampton Roads District
- Joints 1 through 9
- 11 bars in each joint
- 11 bars x 9 joints x 3 replicates
- Total 297 measurements 99 dowel bars @ 3 each

Difference among replicate measurements

- Depth 100% within 2mm
- Side Shift 95% within 6mm
- Horizontal Misalignments 95% within 7mm
- Vertical Misalignments 98% within 2mm

Statistical Repeatability

- VDOT data Analysis is being performed at VTRC
- FHWA/ CPTP ±5 mm at 95% confidence level
- Manufacturer $-\pm 2$ mm for repeat measurements at same settings.

Dowels placed in a basket

Bars must be insulated (epoxy coated), and the basket shipping wire is cut.

Dowels placed in a basket

Basket wire not cut

Basket wire cut

shipping wire

Typical Joint

Calibration of MIT-Scan

Calibration of MIT-Scan

Caltrans Dowel Box

Caltrans Dowel Box Testing

Conclusions

MIT Scan is user friendly

- Learning was fast
- Data analysis is more involved

Safety concern

- Existing pavement
- Traffic control

Areas of concerns with scanned data

- Dowel basket shipping wire
- Dowels deeper than 8 inch
- Presence of tie bar

Conclusions

MIT Scan Successfully performs

- Mechanically inserted dowels
- Dowels on the basket but shipping wire have to be cut

MIT Scan would not do…

- CRCP Bar spacing and depth
- JRCP Interference from reinforcement

CPTP Equipment Loan Program

- Very efficient
- Provided an opportunity to explore the new technology
- Technical support is excellent

100 Years of Excellence

Thank You